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Abstract

Purpose: We investigate the enhancement in terahertz (THz) images of freshly excised breast
tumors upon treatment with an optical clearance agent. The hyperspectral imaging and spectral
classifications are used to quantitatively demonstrate the image enhancement. Glycerol solution
with 60% concentration is applied to excised breast tumor specimens for various time durations
to investigate the effectiveness on image enhancement.

Approach: THz reflection spectroscopy is utilized to obtain the absorption coefficient and
the index of refraction of untreated and glycerol-treated tissues at each frequency up to 3 THz.
Two classifiers, spectral angular mapping (SAM) based on several kernels and Euclidean
minimum distance (EMD) are implemented to evaluate the effectiveness of the treatment. The
testing raw data is obtained from five breast cancer specimens: two untreated specimens and
three specimens treated with glycerol solution for 20, 40, or 60 min. All tumors used in the
testing data have healthy tissues adjacent to cancerous ones consistent with the challenge faced
in lumpectomy surgeries.

Results: The glycerol-treated tissues showed a decrease in the absorption coefficients compared
with untreated tissues, especially as the period of treatment increased. Although the sensitivity
metric of the classifier presented higher values in the untreated tissues compared with the treated
ones, the specificity and accuracy metrics demonstrated higher values for the treated tissues
compared with the untreated ones.

Conclusions: The biocompatible glycerol solution is a potential optical clearance agent in THz
imaging while keeping the histopathology imaging intact. The SAM technique provided a good
classification of cancerous tissues despite the small amount of cancer in the training data (only
7%). The SAM exponential kernel and EMD presented classification accuracy of ∼80% to 85%
compared with linear and polynomial kernels that provided accuracy ranging from 70% to 80%.
Overall, glycerol treatment provides a potential improvement in cancer classification in freshly
excised breast tumors.
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1 Introduction

Imaging biological tissues in the electromagnetic spectrum is a continued challenge at any
frequency. Complicating factors include the morphological nature of biological tissues, the
increased absorption coefficient with moisture content, and the variations of the absorption
coefficients and refractive indices with different tissue types.1,2

Prior research has shown preliminary evidence that reducing moisture content in freshly
excised specimens could enhance the contrast between tissue types, particularly between cancer
and healthy collagen.3 Studies in optical and terahertz (THz) imaging used optical clearance
agents, such as glycerol and urea, for skin and breast cancer.4–12 Glycerol is a biocompatible
agent mixable with water.4 When glycerol is applied to fresh tissues, it binds to the structural
protein and affects the free-to-bound water ratio around the region of application. This interac-
tion changes the hydration of the tissue and hence increases the signal penetration in glycerol-
treated tissue.5

The study in Ref. 6 revealed the assembly process of high-order collagen structures and
proposed a molecular mechanism for increasing tissue transparency after glycerol application
in laser diagnostics and therapeutics. Clearance agents, such as glycerol and urea, retain high-
steady-state flux of the drug across skin membranes at dehydrating conditions.7 The change of
optical parameters of rat ex vivo skin under different concentrations of glycerol solutions was
reported.8 Both cancerous and non-cancerous in vitro human breast tissue show image improve-
ment after tissue treatment using glycerol in conjunction with ultrasound in optical coherent
tomography (OCT).9 Further, imaging biological tissues using 30% to 50% liquid paraffin glyc-
erol solutions as optical clearance provided the best-known enhancement effect in OCT imag-
ing.10 Similar work has shown THz imaging of tissue treated with glycerol solution.11,12 In
Ref. 11, the results demonstrate that glycerol enhances THz wave penetration depth and there-
fore the potential to enhance image contrast of abnormal lesions below the skin. Several clear-
ance agents (e.g., glycerol, propylene glycol, ethylene glycol, and polyethylene glycol) were
investigated in Ref. 12 to comparatively uncover the strength and weaknesses of their use in
the immersion optical clearing of tissues at THz frequencies.

In our previous work, regarding THz imaging of excised breast cancer tumors, we observed
that the differentiation between tumor tissue regions became stronger in the formalin-fixed-
paraffin-embedded (FFPE) blocks, i.e., in dehydrated tissue.13,14 We conducted preliminary
investigation on the effect of glycerol on THz imaging of freshly excised human breast tumors
as reported in Ref. 15. In this work, we conduct a more in-depth investigation on the use of
glycerol to enhance the image contrast of freshly excised breast tumors in THz reflection im-
aging. Our objectives are: (1) to investigate image enhancement when specimens are treated with
glycerol solution, (2) to investigate optical properties (i.e., absorption coefficients and refractive
indices) of glycerol-treated tissues compared with those of untreated ones, and (3) to demon-
strate that the effect of glycerol treating tissue is insignificant on the histopathology process,
which is the current gold standard in the detection of cancer in excised tissues.

Nevertheless, the task of classifying regions of breast tissues from THz spectroscopy and
imaging is an open and challenging problem. Margins between cancer and healthy collagenous
tissues in freshly excised tumors have remained difficult to classify with high accuracy. Prior
work has considered multiple approaches to this task, each with advantages and limitations.
We previously addressed methods of performing classification of cancer using two broad
approaches: (1) an unsupervised approach based on expectation maximization (EM) or Monte
Carlo Markov chain (MCMC) classifiers of Gaussian mixture model (GMM)16–19 and (2) a
supervised approach based on a multinomial Bayesian probit regression learning20 and on con-
volutional neural networks (CNN) and associated artificial neural networks (ANNs).21 For any of
these methods, the underlying THz signal may be preprocessed. Prior work has used the Fourier
transform17 and the wavelet synchrosqueezed transform21 to reduce the dimensionality or to
accentuate certain frequency components and thereby enable better model fit. In this work,
we address the classification of cancer in untreated and glycerol-treated specimens using a super-
vised approach based on hyperspectral imaging techniques.22–33 Specifically, we emphasize the
use of the spectral angle mapping (SAM) and the Euclidean minimum distance (EMD) for image
classification.22–29
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All the above methods are considered “data driven” classification methods as opposed to
“model driven” classifications. This is important for THz classification of cancer in tissue
because to date we do not have a good physical model for how the reflected signal should
be received for different types of tissue. One of the major advantages of the GMM for classi-
fication is that learning can occur in an unsupervised manner.34 That is, the algorithm determines
from the data those parameters that most optimally separate the data into number of classes (e.g.,
two classes as cancer and non-cancerous tissues, or three classes as fat, cancer, and muscle, or
collagen, fat, and cancer).16–21 Unsupervised clustering algorithms do not have a concept of class
but try to separate data into a certain number of clusters based on a selected set of features. For
example, a potential problem will arise if the clustering algorithm does not have the actual num-
ber of classes in raw data. In contrast, both SAM and ANNs require expert labeling of some
amount of data.35,36

SAM requires one model example (the “reference spectrum”) for each class.35 Angles are
calculated between the candidate and each reference. Spectral angles vary between 0 deg and
90 deg, where angles near 0 deg are a close match to the reference spectrum. The chosen class is
the class of the closest reference spectrum to the candidate spectrum. Obtaining a single example
of each class is not a significant challenge provided the knowledge generalizes to other tissue
samples. ANNs can require a large amount of training data as some models may have millions of
parameters that need to be tuned to achieve high classification accuracy.37 Transfer learning can
significantly reduce this amount but still requires several hundred labeled examples.21,38

The statistical classification methods involve rigorous formulations, and the neural network
methods are heavily data driven. However, both require relatively large number of ground truth
data and therefore are less feasible when it comes to availability of human breast cancer data.
Therefore, in this work, the classification is conducted based on SAM technique that does not
require a large amount of training data.

The accuracy of classification models is often difficult to precisely define.39 For cancer diag-
nosis, a false negative may be considered worse than a false positive, and therefore, a simple
accuracy metric may not properly reflect the utility of a classification model. Several techniques
have become standard practice to reduce this limitation, including F1 accuracy and ROC curves.
A comparison between the ROC for the EM, MCMC, and CNN showed better performance for
the CNN classifier than the other methods.21 This makes a sort of intrinsic sense because the
CNN is a supervised model and has been provided more information to make the classification. It
follows that a spectral model will likely obtain accuracy metrics somewhere between MCMC
and ANN models, which is the conclusion found in Ref. 23 for a different application of SAM.

Another concern in classification is how well the underlying model can define uncertainty for
a given region.40 That is, if a section is defined to be a particular class, how certain is that clas-
sification? This is of particular importance in medical diagnosis so that surgeons can make
informed decisions.41 Each of the three models has an intrinsic parameter that is used for clas-
sification that can be adapted to this task. MCMC and EM from GMMs obtain certain probability
of each class and use a preselected threshold to obtain the ROC curve. EMD uses a minimum
distance from the chosen cluster that indicates to a higher likelihood of belonging to that class
than a larger distance. Similarly, SAM uses the spectral angle for classification. An angle near
0 deg is a high match where large angles are unlikely matches. CNNs have a probability metric
for each potential class from the final layer of the model that can act as an uncertainty metric. A
comparison for how each of these uncertainty metrics perform with the dataset could be con-
ducted to determine if one model has a more robust metric for describing uncertainty.

Hyperspectral imaging techniques have been implemented in a variety of applications,
including remote sensing, biomedical imaging, and others.29–33 The work in Ref. 29 reviewed
hyperspectral imaging for cancer applications, where each material provides different response
to light reflection, absorption, and scattering across the electromagnetic spectrum. These proper-
ties are used to differentiate and identify different substances present in a region using their
spectral signature. In Ref. 30, the study highlighted the feasibility of using quantitative hyper-
spectral imaging as a diagnostic tool to delineate cancer boundaries in surgical specimens. In
Ref. 31, the study demonstrated the possibility to measure spectral reflectance in gastric tumors
and to differentiate between tumorous and normal mucosa. In Ref. 32, SAM was utilized as
chemometrics to discriminate gastric cancer from normal. In Ref. 33, the study demonstrated
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a simultaneous discrimination of tumor distributions and provided three-dimensional morpho-
logical information in colon surfaces. To the best of our knowledge, these works were in the
optical frequency band.

In this work, we focused on THz reflection imaging and utilize hyperspectral imaging for the
classification of three regions of interest: (1) cancer, (2) healthy collagen, and (3) fat, in freshly
excised breast tumors. Our approach includes the implementation of linear, polynomial, and
exponential kernels of SAM.25 Furthermore, for the sake of comparison between different clas-
sification methods, we implemented EMD22 in addition to the expanded spectral angular map-
ping (ESAM) that measures the similarity between two images.24 We utilize THz spectroscopy
to obtain the absorption coefficients and indices of refraction of untreated and glycerol-treated
tissues at each frequency up to 3 THz. The purpose is to investigate the treatment effect on tissue
properties. We implemented the morphed pathology technique developed in Refs. 16 and 17 to
achieve a means of point-wise comparison between the fresh and ground-truth images for quan-
titative evaluation of the classifiers. The ground-truth images were obtained from the hematoxy-
lin and eosin (H&E) microscopic pathology slides taken from the FFPE blocks of fresh tissue.

This work is organized as follows: Section 2 describes the methodology and tissue prepa-
ration. Section 3 discusses the THz experimental and classification results along with sensitivity,
specificity, and accuracy metrics for each algorithm. Section 4 provides our concluding remarks.

2 Methodology

2.1 Glycerol Treatment Experiments and Tissue Preparation

Five freshly excised human breast cancer specimens are used in this work. The specimens
were obtained from three tumors purchased from the National Disease Research Interchange
(NDRI) biobank and one tumor purchased from the Cooperative Human Tissue Network
(CHTN) biobank. Tumors were received within 24 h after surgical excision and were immersed
in Dulbecco’s Modified Eagle Medium (DMEM) and antibiotic solution during shipping. These
tissues were specifically selected because the cancer was adjacent to healthy collagen and fat in
the same specimen allowing for investigating their differentiation on the margins.13–20

Two specimens were not treated with glycerol (ND11066 and ND17668) and three speci-
mens were treated with a 60% concentrated glycerol solution (CHTN-20-064, ND18228-part2,
and ND18228-part4). The last two samples were obtained from the same bulk tumor ND18228.
The size of the tumor was ∼2 × 1 × 1 cm3 and was dissected into four parts. Two sections were
treated with the glycerol (parts 2 and 4) while the other two sections (parts 1 and 3) were not
treated. We could not use the untreated parts (1 and 3) because the THz image of part 1 was
deteriorated due to the presence of too many air bubbles during scanning on the imager. In
addition, part 3 showed no cancerous regions, based on the pathology assessment. The photos
of the five samples are shown in Fig. 1. All specimens have normal tissue adjacent to cancerous
tissue to enable the investigation of margins between cancer and healthy collagen or fat.

Our glycerol treatment protocol involved the preparation of concentrated glycerol solution,
followed by application to tissue for a specific time duration. The 60% concentrated glycerol
solution was prepared by diluting the 100% glycerol solution with phosphate-buffered saline

Fig. 1 Photos of the five freshly excised human breast specimens. (a), (b) untreated specimens
and (c)–(e) specimens treated with 60% glycerol concentration for 20, 40, or 60 min.
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solution as a solvent.9 The specimen was taken out of the DMEM and immersed in the 60%
glycerol solution for 5 min as shown in Fig. 2(b). The CHTN 20-064 sample was left in the dish
for 20 min, the ND18228-part2 for 40 min, and the ND18228-part4 for 60 min as shown in
Fig. 2(c). Each specimen was placed on a grade-1 filter paper for ∼1 min to remove the glycerol
solution as shown in Fig. 2(d). The specimen was carefully and gently pressed between two
polystyrene windows and placed on the THz scanner (pulse TPS Spectra 3000 THz imager)
as shown in Fig. 2(e). The idea is to make the imaging surface of the tissue as flat as possible
consistent with the Fresnel reflection and transmission coefficients to be used later in data
processing. The imaging was performed by setting the stepper motors to 200-μm step size.
The two untreated tumors were directly imaged as shown in Fig. 2(e).42,43

Once the imaging process was completed, the tissues were immersed in formalin solution in a
centrifuge tube and shipped to the Oklahoma Animal Disease Diagnostic Laboratory (OADDL)
for the histopathology process.18 Then the formalin-fixed tumors were dehydrated and embedded
in paraffin blocks. Furthermore, a 3- to 4-μm-thick flat section of tissue was sliced from the block
tissue and stained with the standard H&E ink for the pathology imaging. The H&E-stained tissue
slides along with the FFPE tissue blocks were shipped to the University of Arkansas for further
microscopic and THz imaging, respectively.42

2.2 Hyperspectral Imaging and Quantitative Classification

The objective in this task is to classify three tissue types of interest in the tumor (i.e., cancer,
healthy collagen, and fat). We implemented hyperspectral imaging classification using SAM and
EMD as will be discussed in this section.

2.2.1 Training dataset

Three sets of data are generated in this work. The first set is the reference data (training data) of
cancerous, healthy collagenous, and fatty tissues, as shown in Fig. 3. Cancerous tissues were
obtained from breast cancer patients who went through mastectomy or lumpectomy surgeries.
Healthy collagenous and fatty tissues were obtained from breast reduction surgeries. Training
data were not used in any of the testing data to avoid overfitting or selection bias. The training
data represent the magnitude of the THz reflection at each pixel in the specimen and at each
frequency in the THz band of the system (0.1 to 4 THz). Results were averaged based on the total
number of pixels in each type.

The results of Figs. 3(a) and 3(b) show the average THz reflection magnitude of fresh and
FFPE breast tissues, respectively, plotted corresponding to the frequency along the x axis. The
plots in Fig. 3 demonstrate that fresh tissue has a higher magnitude than those embedded in
FFPE. This observation may be explained by the dehydration of the FFPE tissue during the
histopathology process. Another observation is that the magnitude of cancer tissue in FFPE
blocks fluctuates, as shown in Fig. 3(b). Although the THz signals reflected from the fat and
collagen also fluctuate, their fluctuations are insignificant compared of that of cancer as shown in

Fig. 2 Sample preparation for THz imaging of glycerol-treated and untreated tumors. (a) The
freshly excised tumor taken out of DMEM and antibiotics solution, (b) sample immersed in
60% glycerol solution for 5 min, (c) sample placed in a clean petri dish for 20, 40, or 60 min without
paper drying, (d) treated samples placed on grade 1 filter paper for 1 min, and (e) sample sandwich
placed on THz scanner for imaging.
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Fig. 3(b). This fluctuation is likely due to the presence of paraffin in the tissue region because of
the histopathology procedure and results in a smaller magnitude of reflection.

The second set of data is the unknown raw THz data (testing data), and the third set of data is
the ground truth obtained from the pathology images.16,17

2.2.2 Testing and ground truth datasets

The THz reflection images of the five specimens obtained from four tumors are shown in Fig. 4
along with their corresponding pathology images. Figures 4(a) and 4(b) show the THz reflection
images of the untreated tumor 1 and tumor 2. Their corresponding pathology images are shown
in Figs. 4(f) and 4(g), respectively. Figures 4(c)–4(e) show the THz reflection images of the
glycerol-treated tumor 3 and tumor 4 (parts 2 and 4). Their corresponding pathology images
are shown in Figs. 4(h)–4(j), respectively. These three specimens were treated with 60% con-
centration glycerol for 20, 40, or 60 min.

Fig. 4 Testing data (THz images) and ground truth data (pathology images). Freshly excised
human breast specimens with normal tissue adjacent to cancerous tissue. (a), (b), (f), and
(g) Untreated specimens and (c)–(e), (h)–(i) specimens treated with 60% glycerol concentration
for 20, 40, or 60 min. The color bar represents the power spectra of the reflected electric field
magnitude in arbitrary units (a.u.).

Fig. 3 Reference data (training data) based on the average of normalized THz reflection magni-
tude of excised human breast tumors: (a) fresh tissue and (b) FFPE tissue block. The normali-
zation of THz signals for fresh tissue was conducted with respect to the reflection from a single
point on the polystyrene slide with no tissue. Normalization of FFPE tissue was conducted with
respect to the reflection from a golden mirror at a single point.
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Tumor 1 (ND11066) was procured from a 49-year-old female patient via a right breast mas-
tectomy. As can be seen in the pathology image in Fig. 4(f), there are three regions assessed as
cancer (purple color), collagen (pink color), and fat (white color). Upon comparing the THz
image in Fig. 4(a) with the pathology image in Fig. 4(f), it is observed that cancer in the
THz image presents the area with highest reflection (red color) and fat with the lowest reflection
(blue color). However, collagen can be visualized in two different colors—yellow greenish and
light red color. Consequently, it is challenging to visually differentiate cancer from the collagen
on the margins.

Tumor 2 (ND17668) in Fig. 4(b) was obtained from a 71-year-old female patient via partial
mastectomy. The pathology image in Fig. 4(g) represents three regions—cancer, fibro-fatty, and
fat. This tumor has different physiology from tumor 1 in terms of the presence of fibro-fatty
tissue, defined here as a composition of tissues containing collagen mixed with fatty tissues.
Furthermore, the region assessed as cancer includes dense collagen in its background. This col-
lagen is not pre-existing as the fibro-fatty tissue but is induced during the growth of cancer. Upon
comparing the THz image in Fig. 4(b) with the pathology image in Fig. 4(g), it is observed that,
like tumor 1, cancer represents the highest reflection (red color), followed by collagen (cyan/
yellow-greenish color), and fat representing the lowest reflection (blue color). Furthermore, the
shape of the pathology image is slightly different from that of fresh tissue in the THz image. This
shape mismatch occurred during the histopathology process.16,17

The third tumor (CHTN-20-064) was obtained from a 58-year-old female patient via breast
mastectomy surgery. From the pathology image in Fig. 4(h), it is observed that this tumor also
includes cancer, mature collagen with healthy ducts and glands, and fat regions. Furthermore,
this tumor was treated with 60% glycerol for 20 min before imaging as described in Sec. 2. Based
on the color bar scale, the THz image of the tumor in Fig. 4(c) represents lower reflection than
that of the first two tumors in Figs. 4(a) and 4(b). This low reflection could be explained by the
effect of glycerol on the treated tissue where the penetration depth of the signal in the tissue has
increased leading to smaller reflection values, in agreement with the results reported in Ref. 11.
Like the first two tumors, cancer represents the highest reflection (light red color) compared with
collagen (yellow color) and fat (blue color).

The fourth and fifth specimens in Figs. 4(d) and 4(e) represent parts 2 and 4 of the bulk tumor
ND18228, obtained from a 70-year-old female via mastectomy surgery. As mentioned earlier,
ND18228-part 2 specimen was treated with 60% glycerol for 40 min and ND18228-part 4 tumor
was treated for 60 min. The pathology image of part 2 sample is presented in Fig. 4(i) which
shows that the percentage of healthy tissues (collagen and fat) is larger than that of cancer. When
the THz image is compared with the pathology image, a large area is observed in the center of the
specimen that has high reflection, which is typical of cancerous regions (light red). However,
during pathology, this region was assessed as collagen. The other collagenous (cyan color) and
fatty (blue color) regions are otherwise quite differentiated from cancer. Like tumor 3, the highest
reflection in the THz image in Fig. 4(d) is lower than those in tumors 1 and 2 in Figs. 4(a) and
4(b), which is due to the glycerol treatment. Nevertheless, the identification of the region in the
center of the specimen poses a challenge in THz imaging. We can think of three possible reasons
for this discrepancy: (1) the region was originally cancer in the fresh tissue but it was shaved off
during the histopathology process; (2) the region represents dense collagenous tissue that was
not differentiated correctly from cancer in THz imaging, since both tissues have close electrical
properties at higher frequencies as shown in Fig. 3;43 and (3) the tissue orientation was inad-
vertently altered during paraffin embedding process for histopathology. For the third possibility,
what we see in the pathology image could be the backside of the specimen which does not have
cancer in the center region.

Similarly, the pathology image of ND18228-part 4 shown in Fig. 4(j) displays cancer as an
oval shaped region in the lower middle part of the specimen. However, in the THz image, the
cancer region (light red color) is visualized more extended to the right side along with the lower
middle region. The collagen region is represented in yellow and cyan colors and fat in blue.
Figure 5 shows the pie chart summary of the percentage of pixels in the three regions of fresh
tissue (cancer, collagen, and fat). The training dataset of the fresh tissue is shown in Fig. 5(a)
with 4588 cancer pixels, 38,409 collagen pixels, and 26,272 fat pixels. The testing dataset of the
untreated tissues is shown in Fig. 5(b) with 2706, 571, and 993 pixels in cancer, healthy collagen,

Vohra et al.: Hyperspectral terahertz imaging and optical clearance for cancer classification. . .

Journal of Medical Imaging 014002-7 Jan∕Feb 2022 • Vol. 9(1)



and fat regions for tumor 1, and 2315, 732, and 1834 pixels in cancer, healthy collagen, and fat
regions in tumor 2. The testing dataset of treated tissues is shown in Fig. 5(c) with 1615, 597, and
586 pixels in cancer, healthy collagen, and fat regions for tumor 3; 718, 799, and 3703 pixels,
and 829, 1837, and 3250 pixels in cancer, healthy collagen, and fat regions for tumor 4 parts 2
and 4, respectively. As observed in Fig. 5, the cancerous pixels in the training dataset represent
only 7% of the specimen, which motivates the use of SAM as a classifier in this work. Although
the number of cancerous pixels is much smaller than healthy collagenous and fatty tissues, this
difference is immaterial in classification using SAM and is one of the motivating factors for our
evaluation metrics. Given a large enough number of independent and identically distributed sam-
ples from each of the types of tissue, the calculation of the average reference spectrum is robust
to outliers in the dataset.44,45 This is an advantage over other data driven classification methods
that may be biased if classes are not properly balanced in proportion to the expected ratio of
tissues.46

2.2.3 Hyperspectral SAM classification technique

The THz imaging system provides a time domain pulse reflected from each pixel in the speci-
men. The frequency domain reflection is obtained through the Fourier transform of each pulse.
The diagram in Fig. 6 clarifies the scheme of the hyperspectral imaging where several frequen-
cies in the THz band are used (K frequency bands). The raw data of THz images at each fre-
quency is converted from a matrix of orderM × N to K vectors each of lengthMN. The training
dataset matrix is of order K ×W, where K represents the number of frequency bands used in
the classifier and W represented the number of regions of interest to be classified. Here we used
W ¼ 3 for cancer, healthy collagen, and fatty tissues. The details of SAM algorithm are given in
Refs. 22–29. There are several kernel-based methods that can be used in SAM, such as linear,
polynomial, and exponential. The kernel-SAM (KSAM) is given by25

Fig. 5 Summary of the % number of pixels in the three regions of interest in fresh tissues: (a) train-
ing data, (b) testing data of untreated tissue, and (c) testing data of treated tissue.

Fig. 6 THz hyperspectral imaging: (a) raw data of THz images of order M × N at K frequencies
(f 1; f 2; : : : ; f K ); (b) THz images reorganized in K columns each column of order NM × 1 producing
a matrix of order NM × K ; and (c) training THz data of freshly excised specimen of cancer, fat, and
collagen.
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EQ-TARGET;temp:intralink-;e001a;116;735θ ¼ arccos

�
Kðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðx; xÞKðz; zÞp
�
; 0 ≤ θ ≤ π∕2: (1a)

The parameter θ presents the angle between the raw data vector (testing data) and the reference
data vector (training data). The obtained value of the angle determines how close the unknown
pixel in the image to the region type in the reference data. We did not use an angle threshold in
the implementation of the SAM classifier. Instead, we used the minimum angle of the three
classes to determine if the pixel in the THz image is to be classified as cancer, healthy collagen,
or fat. In other words, the predicted class is determined to be the class of the reference spectrum
that produces the minimum angle between the candidate and reference spectrum.22 In Eq. (1a),
the x and z are data matrices, one represents the raw data (testing data) and the other represents
the reference data (training data). Let x represent the THz images of order NM × K, and z re-
present the training data of the three regions of interest and of order K × 3. For the linear kernel,
Kðx; zÞ ¼ xTz, for the polynomial kernel, Kðx; zÞ ¼ ðxTzþ bÞd, where b and d are constants
(d > 0), and for the exponential kernel Kðx; zÞ ¼ expð−ð1∕2σ2Þ kx − zk2), where σ is a con-
stant. The ESAM is given by24

EQ-TARGET;temp:intralink-;e001b;116;540θ ¼ arccos

�
2xTz

kxk2 þ kzk2
�
; 0 ≤ θ ≤ π∕2: (1b)

Furthermore, we investigated the EMD given by22

EQ-TARGET;temp:intralink-;e001c;116;482kx − zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
1

ððxi − ziÞ2Þ
vuut : (1c)

For quantifying the classifier, we calculated the standard sensitivity, specificity, and accuracy
metrics. The pixels in the classified regions of interest are compared with those in the ground
truth data of the pathology images. These metrics are calculated as

EQ-TARGET;temp:intralink-;e002a;116;389sensitivity ¼ TP

P
¼ TP∕ðTPþ FNÞ; (2a)

EQ-TARGET;temp:intralink-;e002b;116;336specificity ¼ TN

N
¼ TN∕ðTNþ FPÞ; (2b)

EQ-TARGET;temp:intralink-;e002c;116;304accuracy ¼ TPþ TN

Pþ N
¼ ðTPþ TNÞ∕ðTPþ TNþ FNþ FPÞ; (2c)

where P (or N) represents the number of pixels in the ground truth pathology images that is
positive (or negative). The symbols TP, FN, TN, and FP represent the number of pixels in the
classified image that is true positive, false negative, true negative, and false positive, respectively.
In this work, we utilize morphed pathology images to compensate for the changes that occurred
to the fresh tissue during the histopathology process as reported in our previous work.16,17

3 Experimental Imaging and Classification Results

Overall, it can be observed in Figs. 4(c)–4(e) that with the 60% glycerol treatment, the reflection
from different regions in the three tumors were decreased by ∼30% compared with the reflection
of the untreated samples in Figs. 4(a) and 4(b). Specifically, the CHTN-20-064 specimen
presents higher reflection values than the ND18228-part 2 followed by the ND18228-part 4
specimens. First, we investigate the effect of the glycerol treatment on the specimen before
we implement and quantify the classification accuracy of THz images. We utilized the tomog-
raphy technique to obtain the absorption coefficient and refractive index at each pixel in the
image and at each frequency in the frequency band of the system.43
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3.1 Glycerol Treatment Results

The absorption coefficients and the refractive indices of cancerous and non-cancerous pixels in
the untreated and treated specimens are shown in Fig. 7. According to our protocol, the tissue
was treated with glycerol for 20, 40, or 60 min. The absorption coefficients of all cancerous
pixels are calculated and averaged at each frequency. Similarly, the average of the absorption
coefficients of all non-cancerous pixels is obtained at each frequency. The same is repeated for
the refractive indices at cancerous and normal pixels. The absorption coefficients of cancerous
pixels are shown in Fig. 7(a) and those of non-cancerous pixels of healthy collagen and fatty
regions (normal) are shown in Fig. 7(b). The refractive indices of cancerous pixels are shown in
Fig. 7(c) and those of normal pixels are shown in Fig. 7(d). For comparison, we added the results
of the absorption coefficients and refractive indices of water and glycerol of 60% concentration
(dashed lines). Figure 7(a) demonstrates the trend of glycerol effect on the absorption coeffi-
cients of tissues treated for 0 min (untreated) to 60 min treatment. As anticipated, the absorption
coefficients are negatively correlated with the time duration of glycerol treatment. Furthermore,
the absorption coefficient of water represents the upper limit while that of glycerol represents the
lower limit of the optical properties. The results of normal tissue in Fig. 7(b) show the same
negative correlation. However, the glycerol solution shows comparable absorption coefficients
to normal tissues treated at 40 or 60 min, which was not the case in the cancerous tissues in
Fig. 7(a). This could be explained by the morphological difference between normal and cancer-
ous tissues where the former allows the glycerol to penetrate the tissue more. Furthermore, upon
comparing the results of Figs. 7(a) and 7(b), the absorption coefficients of cancerous tissues are

Fig. 7 Absorption coefficient and refractive index of the specimen shown in Fig. 4 (testing data):
(a) absorption coefficient of cancerous region, (b) absorption coefficient of non-cancerous regions
(healthy collagen and fatty tissues), (c) refractive index of cancerous region, and (d) refractive
index of non-cancerous regions (healthy collagen and fatty tissues). Results are obtained through
reflection spectroscopy at each pixel.
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higher than those of normal tissues with or without treatment, which is consistent with our
reported data in Ref. 43.

For the refractive indices in Figs. 7(c) and 7(d), the results did not show significant difference
between the untreated and treated tissues. However, upon comparing Fig. 7(c) with Fig. 7(d), the
refractive indices of cancerous tissues are closer to those of water and are higher than those
of normal tissues. The refractive index indicates the velocity of the wave in tissue in this case.
In other words, the results of Figs. 7(c) and 7(d) can be interpreted that the wave travels slower in
cancerous tissue compared to healthy tissues, regardless of the treatment. Based on the results of
Fig. 7, we can conclude that the glycerol treatment indeed reduces the absorption coefficients
of freshly excised tissue with increased treatment duration. To confirm the trend effect observed
in Fig. 7 for human tissues, we conducted two experiments on other biological tissues (salmon
and bovine) where the treatment time was increased from 0 to 150 min (results are not shown for
space limitation). We recognize that longer durations of glycerol treatment can make the tissue
dry and hence lose its properties as fresh tissue.

It is important to demonstrate that the histopathology process is not affected by glycerol
treatment of the tissue. Therefore, in the histopathology lab at Oklahoma State University,
we experimented with fresh mammary gland from a cow (adult Holstein cow). A dairy cow
was selected because of the well-developed mammary glands and ducts, as well as the prominent
collagenous stroma. The tissue was recovered from the cow immediately after euthanasia for
an unrelated (severe) leg injury. We treated tissue with 60% glycerol dissolved in phosphate-
buffered saline for 0 min (negative control), 10, 30, 60, or 120 min. Following the exposure
periods, the slice of fresh mammary gland was immersed in 10% neutral-buffered formalin
and gently agitated. Tissues were fixed in formalin overnight and were placed in a cassette for
routine tissue processing. No differences were observed in untreated (formalin fixation only)
and glycerol-treated (varying exposure times) sections of lactating mammary gland. In addition,
no differences were detected between the various treatment groups.

We recognize that long treatment time of fresh tissue is not realistic in a clinical setting, and
therefore, further investigation of glycerol concentration, treatment protocols, and other types of
clearance agents will be needed and are left to future work.

3.2 Quantitative Classification Results

The five classifications schemes investigated in this work are SAM linear, polynomial, and expo-
nential kernels, EMD, and ESAM (discussed in Sec. 2). In all results, each frequency band
included 10 frequencies and we investigated 95 frequency bands. The frequency bands are
cumulative which means that we started with the first band ranging from 0.23 to 0.277 THz,
then we added 10 more frequencies such that the second band ranges from 0.23 to 0.324 THz, the
third band from 0.23 to 0.37 THz, etc. Due to space limitation, we only present the classification
images for the frequency band #22 which starts from 0.23 to 1.25 THz. The signal around 0.1 to
0.2 THz is unreliable and the signals at frequencies higher than 3 THz are noisy due to the high
absorption of the signal in freshly excised tissues.43 Therefore, the results for those bands are not
included in the classifier quantification plots. For consistency, we presented the quantification
results of all classification schemes from frequency band #15 (0.23 to 0.69 THz) to frequency
band #55 (0.23 to 2.77 THz). We experimented with some values of polynomial parameters d
and b and selected d ¼ 0.35 and b ¼ 0.2 as the best performance in this application.28

Additionally, we selected σ ¼ 100 in the exponential kernel as it provides best classification
compared with smaller values of σ.25 The ground truth morphed pathology masks of cancer,
fat, and healthy collagen obtained from the pathology images in Figs. 4(f)–4(j) are not shown
here for space limitation, but details of the algorithm are available in Refs. 16 and 17.

The results in Fig. 8 correspond to the classifications of the five specimens shown in Figs. 1
and 4. The spectral mapping classification results based on the linear, polynomial, and expo-
nential kernels of SAM, EMD, and ESAM schemes are shown in Figs. 8(a)–8(y). Each clas-
sification image contains three colors representing the three regions of interest: cancer (yellow),
fat (turquoise), and healthy collagen (dark blue). Figures 8(a)–8(e) correspond to the classifi-
cations of the untreated tumor 1. Figures 8(f)–8(j) correspond to the classifications of the
untreated tumor 2. On the other hand, Figs. 8(k)–8(o) correspond to the classifications of the
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glycerol-treated tumor 3 for 20 min, Figs. 8(p)–8(t) correspond to the classifications of the
treated tumor 4 part 2 for 40 min, and Figs. 8(u)–8(y) correspond to the treated tumor 4 part
4 for 60 min.

To interpret the classification results in Fig. 8, we look at the THz images in Figs. 4(a)–4(e)
that represent the testing data (raw data). The classifications images of Fig. 8 are obtained by
performing the dot product in the SAM algorithm or the minimum distance in the EMD algo-
rithm with respect to the training data of cancer, healthy collagen, and fat. First, we observed that
the classification images for tumors 1 to 3 based on the exponential kernel, the EMD, and the
ESAM provide comparable accuracy and are strongly correlated to the THz images in Figs. 4(a)–
4(c). However, they are noticeably different from those obtained using the linear and the poly-
nomial kernels. Furthermore, for glycerol-treated specimens of tumor 4 parts 2 and 4, we noticed
that the THz images in Figs. 4(d) and 4(e) do not visually seem well correlated with the pathol-
ogy images in Figs. 4(i) and 4(j), respectively. We can interpret this observation by the defor-
mation occurred to the freshly excised specimen ND18228 during the histopathology process

Fig. 8 (a)–(y) Spectral mapping classifiers based on linear, polynomial, exponential kernels, and
EMD and ESAM methods for band # 22 which starts from 0.23 to 1.25 THz. The yellow color
indicates to cancer, the turquoise color indicates to fat, and dark blue color indicates to healthy
collagen.
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such that the mismatch between the THz and morphed pathology images became more notice-
able compared to the other three tumors. Additionally, the THz image was taken at the surface of
the fresh bulk tissue, whereas the pathology image was taken at a different surface in the FFPE
block tissue after completing the histopathology process. Indeed, there is a difference in the
imaged surface between the two methods which could introduce additional mismatch between
THz and pathology images.

Due to the significance of cancer as the main region of interest and due to space limitation,
we present the classification metric results of sensitivity, specificity, and accuracy of cancer only
in Figs. 9(a)–9(o). The results show that for tumor 1, the sensitivity metric (TP∕P) of cancer in
Fig. 9(a) demonstrates ∼84% across all frequency bands, except those of the linear and poly-
nomial which show deterioration starting at frequency band # 45. In Fig. 9(b), the specificity
metric (TN∕N) of cancer demonstrate ∼84% in the exponential (EXP), the EMD, and the
ESAM, consistently across the frequency bands. However, the results of the linear and poly-
nomial kernels show increasing specificity across the frequency bands ranging from ∼70%
to 85%. The accuracy metric of cancer in Fig. 9(c) demonstrates a slightly better performance
of the EXP, the EMD, and the ESAM (∼84%) compared with the linear and polynomial kernels
(∼80%). It is important to mention that while the classification image visually show strong cor-
relation with the THz image, the comparison in these metrics was conducted with respect to the
pathology images through the morphed pathology masks.16,17

Furthermore, there is an unavoidable human error in producing the morphed pathology
masks due to the deformation of fresh tissue during the histopathology process. Indeed, the
pathology images obtained from slicing the dehydrated tissue blocks are the only available
ground truth data to compare with. This is one of the continuing challenges when assessing
THz images of freshly excised tissues as will be discussed in Sec. 4.

In Fig. 9(d), the results for tumor 2 show the sensitivity of cancer demonstrating ∼84% across
the frequency bands for all methods. However, the specificity in Fig. 9(e) shows lower values in
the linear and polynomial methods, ranging from ∼60% to 70%. The accuracy results in Fig. 9(f)
also show better performance in the EXP, the EMD, and the ESAM methods with almost con-
stant values at ∼82% across the bands. On the other hand, the accuracy is ranging from ∼70% to
75% in the linear and polynomial kernels.

In Fig. 9(g), the results for tumor 3 show the sensitivity of cancer range ∼75% to 80%, with
the linear and polynomial methods showing slightly better values than the EXP, the EMD, and
the ESAM methods. Like the results of Fig. 9(e) of tumor 2, the specificity results in Fig. 9(h)
show smaller values in the linear and polynomial methods ranging from ∼68% to 85%, while the
EXP, EMD, and ESAM methods show specificity results ∼85% consistently across the fre-
quency bands. The accuracy results in Fig. 9(i) also show better performance of the EXP,
EMD, and ESAM methods with almost constant values at ∼80%, while it is around ∼75% for
the linear and polynomial kernels.

The results in Fig. 9(j) for tumor 4-part 2 sensitivity of the linear and polynomial show better
values (∼65%) than those of the EXP, EMD, and ESAM (∼30% to 35%). However, the speci-
ficity of the latter show ∼95% in Fig. 9(k) and the accuracy ∼85% as shown in Fig. 9(l). The
linear and polynomial specificity and accuracy results range from ∼60% to 80% as shown in
Fig. 9(l). Similarly, for tumor 4-part 4 sensitivity of the linear and polynomial show better values
(∼80%) in Fig. 9(m), than those of the EXP, EMD, and ESAM (∼60% to 65%) in the same
figure. Interestingly, the specificity and accuracy are much better in the EXP, EMD, and
ESAM, ∼90% in Fig. 9(n) and ∼84% in Fig. 9(o).

Finally, we conclude this section with a quantitative comparison between the untreated and
glycerol-treated specimens. The results are shown in Fig. 10 for the cancer classification.
Figures 10(a)–10(c) demonstrate the sensitivity, specificity, and accuracy metrics, respectively.
Due to space limitation, the results of Fig. 10 are based on SAM exponential kernel only. In
Fig. 10(a), we can see that the glycerol-treated specimen of ND18228 part 2 (green color) shows
the lowest sensitivity among all specimens investigated in this work. As defined earlier, the
sensitivity represents the ratio between the number of the positive cancer pixels in THz image
and true positive cancer pixels in the ground truth pathology image. On the other hand, we
demonstrated in Figs. 9(j)–9(l) that ND18228 part-2 specimen shows the lowest sensitivity com-
pared with all other specimens investigated in this work. This observation was explained earlier
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by the mismatch between the THz and pathology images shown in Figs. 4(d) and 4(i),
respectively.

Similarly, the treated specimen of tumor 3 (black color) shows sensitivity of ∼73% which
was also unexpected. However, the sensitivity of the treated specimen ND18228 part-4 shows
higher sensitivity along with those of the untreated tumors 1 and 2. Figure 10(a) indicates that the
glycerol treatment is not as effective in classifying the cancerous tissues as anticipated. However,
there are several factors affecting the sensitivity of the classifier, e.g., the amount of cancerous

Fig. 9 (a)–(o) Classifier metrics of all specimens: sensitivity, specificity, and accuracy of cancer
classification.
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tissue versus collagenous and fatty tissues, especially dense collagen. For example, the cancer-
ous tissues in the untreated tumors 1 and 2 are much larger than those of the collagen and fatty
tissues. For this reason, the sensitivity of the classifier could be higher in tumors 1 and 2 com-
pared with those of tumor 3 and tumor 4 part-2 and part-4, regardless of the glycerol treatment.
Also the level of mismatch between the THz image and the pathology image plays a significant
role in classification.

Figure 10(b) demonstrates that the specificity of the three treated specimens (tumors 3, 4
parts 2 and 4) is higher than that of the untreated samples. The specificity was defined earlier
by the ratio between the number of the negative (non-cancerous) pixels in THz image and the
true negative non-cancerous pixels in the ground truth pathology image. The results of Fig. 10(b)
indicate that the glycerol treatment was more effective in classifying the non-cancerous tissues
than classifying the cancerous ones shown in Fig. 10(a).

Figure 10(c) demonstrates that the classifier accuracy of treated tumor 4 part 2 and part 4 is
higher than that of the untreated tumors 1 and 2. However, the accuracy of the treated tumor 3
shows the lowest accuracy, although still ∼80%. The accuracy was defined earlier as kind of the
average between the sensitivity and specificity; therefore, low sensitivity directly affects the
accuracy of the classifier. Based on Fig. 10, the overall results indicate that glycerol treatment
of tissue provide better classification compared with no treatment. However, more tissue
specimens are needed for investigating the classifier sensitivity issues of Fig. 10(a).

4 Conclusions

The differentiation between cancer and collagen regions continues to be a challenge in THz im-
aging of freshly excised breast tumors. This work was focused on two goals: the first one was
using the clearing agent glycerol to demonstrate its potential in enhancing the contrast between
cancer and healthy collagen tissues. The second goal was implementing the hyperspectral SAM
algorithm to classify cancer, collagen, and fat in tumor tissue. In this algorithm, there are several
kernels cited in the literature25 that deserved to be investigated to provide the best classification.

In this work, we used glycerol solution of 60% concentration as an optical clearance agent to
treat excised tissues before scanning on the THz imager. Other imaging techniques have used
glycerol and other types of optical clearance agents to improve the image contrast in frequencies
across the electromagnetic spectrum. All tumors used in the testing data have healthy tissues
adjacent to cancerous ones, consistent with the challenge faced in lumpectomy surgeries. On
the other hand, to produce accurate training dataset, the THz cancer data were obtained entirely
from cancerous tissues through lumpectomy or mastectomy surgeries, whereas the THz healthy
data were obtained entirely from healthy tissues through breast reduction surgeries. The ground-
truth data were obtained from the pathology images using the morphed pathology technique.16,17

We investigated the effect of glycerol treatment on excised human breast tissues for appli-
cation time of 20, 40, or 60 min. The three specimens that were treated with glycerol of 60%
concentration were obtained from tumor 3 (20 min) and tumor 4 part-2 (40 min) and tumor 4
part-4 (60 min). On the other hand, we had tumors 1 and 2 that were not treated. The results of
the absorption coefficients and the refractive indices of the treated human specimens were

Fig. 10 Quantitative comparison between untreated and glycerol-treated specimens. Cancer
classification: (a) sensitivity, (b) specificity, and (c) accuracy. All results are based on the expo-
nential kernel of SAM.
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compared with those of the untreated ones. The obtained results showed that for any tissue type,
the absorption coefficients of the treated specimens decreased with the application of glycerol
and with increasing the time duration of the treatment. This observation is consistent with the
work reported in the literature,11 where the application of the clearance agent increased the pen-
etration depth of the THz signal in the tissue. In other words, the application of glycerol
increased the signal transmission and reduced the reflection from the tissue. Furthermore, the
results showed that the absorption coefficients in cancer regions remains higher than that in
healthy regions regardless of the glycerol treatment.43

Hyperspectral imaging technique was used in image classification based on cumulative fre-
quency bands. All bands start from the same frequency and each band had 10 more added
frequencies than the previous band. The THz images of the five specimens considered in this
work were classified using five classifications schemes: (1) SAM linear kernel, (2) SAM poly-
nomial kernel, (3) SAM exponential kernel, (4) EMD, and (5) ESAM. The results were quan-
titatively compared using the standard metrics of sensitivity, specificity, and accuracy. The linear
and polynomial classifiers did not show as good classification as the EXP, EMD, and ESAM in
all cases investigated here.

The THz images of fresh tumors 1 to 3 showed good correlation with the pathology images
and that reflected on their good classifications results. On the other hand, the THz images of
tumor 4 parts 2 and part 4 did not show good correlation with their pathology images and hence
the sensitivity metric in their classifications was not as good as those of tumors 1 to 3. The
classification of tumor 4 parts 2 and 4 showed cancerous regions that were not seen in the path-
ology images. We can think of three possibilities for the discrepancy between THz and pathology
images as: (1) during the histopathology process, the specimen was shaved off producing a dif-
ferent imaging surface for pathology than what was used in the THz imaging; (2) THz could not
accurately differentiate between cancer and dense collagen due to their close properties espe-
cially at high frequency as shown in Fig. 3(a); and (3) the tissue orientation was inadvertently
altered during the paraffin embedding process for histopathology.

To ensure that these possibilities occur only in imaging freshly excised specimens, we inves-
tigated the THz imaging of the FFPE blocks of tumor 4 parts 2 and 4 where this discrepancy was
mainly observed in their fresh tissue images. In this case, the number of pixels in the FFPE
training data of cancer, collagen, and fat are 4941, 15,522, and 45,403, respectively. The results
are shown in Fig. 11, demonstrating excellent correlation between FFPE THz and pathology
images. The classification results using the exponential SAM kernel also showed excellent cor-
relation with both the FFPE THz and the pathology images. Furthermore, the classification met-
rics were compared in Table 1, showing much higher values for the sensitivity, specificity, and
accuracy of the FFPE compared with those of fresh specimens. While the classification images
show some spots of cancer in Figs. 11(c) and 11(f), these wrongly classified spots are much
smaller than the correctly classified regions of cancer, collagen, and fat.

It is important to be aware that during the histopathology process, the freshly excised tumor is
dehydrated by removing all the lipids and fluids before embedding in the paraffin block. This
dehydration process creates lumens or cracks in the cancer region. These lumens are then filled
with paraffin, which has lower refractive index and absorption coefficient values compared to
cancer. Therefore, it causes the fluctuations in the average normalized reflection magnitude as
shown in Fig. 3(b). The cancer reflection magnitude in Fig. 3(a) is ∼45 times larger than that in
Fig. 3(b), however, the classification results of the FFPE tissue are correct as shown in Fig. 11.

Discussing possibility (1), indeed at the OADDL histopathology lab, the FFPE blocks were
faced in on the microtome until all margins/edges of tissue were visible on a microscope slide.
The depth of tissue sectioning would depend on the uniformity of the excised fresh surface.
Additionally, fatty tissues are more susceptible to slight tissues distortion during formalin fix-
ation when compared to rigid (i.e., collagenous or cancerous tissues), therefore some degrees of
tissue distortion may have occurred in freshly excided tissues with higher fat content. Finally,
slight tissue distortion may have occurred during attachment and removal of tissue specimen to
the cardboard stock used to maintain proper orientation of the tissue during shipment in 10%
formalin solution.

Based on the obtained results in this work, the application of glycerol on freshly excised
tissues for specific time periods make the tissue temporarily dehydrated and hence less reflective
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compared with non-treated tissue. This can be seen in Fig. 4, where the two images of non-
treated tissues show that the cancer has higher reflection intensity, represented by the darker
red color. On the other hand, the three images of glycerol-treated tissues show that the cancer
has lower reflection intensity, represented by the lighter red color. These results are consistent
with the results of Fig. 7. Based on the results of Figs. 4 and 7, it can be concluded that indeed the
penetration depth of THz signal has been enhanced in treated fresh tissue.

Overall, the improvement in THz classifications of fresh tissues treated with glycerol solution
is promising. The adopted treatment protocol, the type of the optical clearance agent, and the
time duration of the treatment are all vital factors that can use further investigation in the future.

Upon conducting qualitative comparison between THz images and x-ray images of human
tissue and with computer tomography images of mice tissue, the results were in favor of THz
images (not included due to space limitation). Providing a quantitative comparison among differ-
ent imaging modalities of excised tissues is important, but it is outside the scope of this work.
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Table 1 Comparison between fresh and FFPE tissue classification across frequency bands 15
to 55.

Tumor 4
(ND18228)

Fresh FFPE

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Part 2 27 to 22 95 to 96 86 to 86 91 to 94 99 to 95 98 to 95

Part 4 60 to 56 88 to 89 84 to 85 81 to 84 92 to 88 91 to 89

Fig. 11 FFPE block tissue of tumor 4 (ND18228: (a)–(c) part 2 and (d)–(f) part 4. Pathology image,
THz reflection image, and SAM exponential classifier. THz images are based on the peak time
domain signal at each pixel. The classification images (c) and (f) are in the frequency band # 22
(0.23 to 1.25 THz).
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