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Abstract

The presented reconstruction algorithm is based on merging the fast multipole method
(FMM) for the forward solver with the rapidly convergent descent method for the cost function
minimization algorithm (by Fletcher and Powell 1964 and 1970). Parametric results are
presented showing the potential of the proposed computational algorithm.

L INTRODUCTION

The presence of rough ground surfaces is considered a major source of clutter in subsurface
sensing applications. The ground response can be significantly stronger than the buried target
signature. In addition, the ground roughness causes considerable distortion to ground penetrating
radar (GPR) received signals, making it fruitless to process the data using conventional signal
processing techniques. While it is not usually feasible to experimentally determine the unknown
rough ground profile, however, fast reconstruction algorithms can be developed to reconstruct
the profile based on collected GPR data. The current work is considered an initial effort to
remove ground response from GPR data for target imaging. In real situation, the ground is rough
in two dimensions (i.e. x and y directions) which makes it more challenging to be reconstructed.

Previous works to reconstruct 1-D and 2-D rough surfaces were based on using the
Kirchhoff approximation [1-2], to compute the electromagnetic waves scattered from the rough
surface [3]. The focus of the current work will be on developing a fast computational inversion
algorithm for reconstructing 2-D dielectric rough surfaces. The algorithm is based on combining
a fast forward solver with an efficient searching technique. It is also based on using the
electromagnetic waves (GPR-type data) scattered from the rough ground surface to retrieve the
surface height variation. For simplicity, synthetic GPR-type data will be sued here (i.e. no real
data). The previously well developed steepest descent fast multipole method (SDFMM) for
targets buried under a 2-D dielectric random rough ground surfaces will be used as the fast
forward solver [4]. In addition, the efficient optimization search technique based on the
algorithm of Fletcher and Powell, for rapidly convergent descent method in minimizing a cost
function, will be employed [5].

Several key issues need to be examined; the effect of the incident and scatter polarization
and directions, the location of receivers (e.g. far-zone or near-zone), computational expenses of
the algorithm, cost function type, and mathematical model of the rough surface and its unknown
parameters.

Computational !magingll, edited by Charies A, Bouman,
Eric L. Miller, Proc. of SPIE-IS&T Electronic Imaging,
SPIE Vol. 5299 © 2004 SPIE and IS&T - 0277-786X/04/$15




IN. FORMULATIONS

The cost function represents the mean square error between synthetic data and simulated
data of scattered electric fields (GPR-type data). In this work, the cost function C(0) is defined

by:

N, 2
C(g) — ZIETme ” E,-S"" (1)
i=1

in which, £/ and E" represent the scattered electric fields for true-data (GPR-type data) and
simulated data, respectively, at receiver number i. The total number of receivers (sensors) is
given by N . All receivers are located above the rough ground. The electric fields in (1) are

obtained at single frequency and single polarization of the incident waves. The vector &
represents a vector of unknown parameters that need to be recovered in order to reconstruct the
rough surface profile. The cost function in (1) will be minimized as follows:

6 = arg,, (min(C(6))) (2)

in which & represents the vector of the obtained estimated parameters. The minimization
process, i.e. the optimization technique, will be conducted using a rapid and efficient steepest
decent approach, this algorithm was developed by Fletcher and Powell [5]. The optimization
algorithm involves evaluating the gradient of the cost function with respect to each unknown
parameter. This scenario necessitates using a fast forward solver in the inversion algorithm, such
as the SDFMM. For faster and more efficient computations, the elements of the unknown vector
¢ will be restricted to certain limits. In other words, upper and lower bound constraints are a
priori provided to the optimizer, i.e. 8,; <@<8§,,. The iterative inversion technique to search

for the unknown parameter vector & is given by [5]:

n

O = ék +a,d, (3)

in which £ is the iteration index, a, is the £-step, and the vector d, is the vector that minimizes

the quadratic equation [5].
The geometry of the problem is shown in Fig. 1 and the flowchart of the algorithm is
demonstrated in Fig. 2.

III. NUMERICAL RESULTS

Several key issues of the inversion algorithm will be discussed such as: the mathematical
model of the unknown rough surface profile with its unknown parameters, the behavior of cost
functions versus these parameters, and the convergence of the algorithm with respect to the
initial guess of these parameters. Numerical examples to clarify these issues will be presented
here. The results are obtained using the fast forward solver SDFMM for a surface size of
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1.224%1.224 m? at f = 1GHz (free space wave length A, =30). The incident electromagnetic
wave is represented by a Gaussian beam normally incident to the surface with horizontal
polarization [4]. The incident beam illuminates a circular spot on the ground of diameter 40cm,
Fig. 1. The relative dielectric constant of the ground is assumed £, =2.5-i0.18. The
horizontally polarized electric field scattered from the ground in the far-zone at normal incidence
is calculated to obtain the cost function C(é?). This implies that the co-polarized waves (HH) are
obtained at a single receiver (i.e., N , =1in(1)).

Example 1 focuses on a 2-D sinusoidal rough surface [1]. The model of the surface is
hx, y)=H cos(2mx/ L)cos(Z;zy/ L), where H and L are the surface maximum height and period,
respectively. The behavior of the cost function C(E?) is plotted versus the surface parameters A

and L as shown in Fig. 3a. The results show a pronounced local minimum at £ = 1A, when for
large surface heights more than for small heights. This indicates that smoother surface profiles
could be more difficult to reconstruct. The inversion algorithm is tested to recover the unknown
parameter H, assuming, for simplicity, that the surface period is known (L = IX0), as shown in
Fig. 3b. Zero initial value of H (i.e., flat surface) has been used in the algorithm recovering a
sinusoidal surface with relative error less than 3% with respect to the true surface.

In Example 2, the previous test is repeated for a 2-D random rough surface modeled by
tensor-product  B-spline  function [6]. The surface model is given by

N, N,
Hix, y):ZZa”‘mS” (x)s (v), where @, represents the unknown coefficients, S,(x) and

n=l m=l
| S, (») are the B-spline functions for x and y, respectively, N, and N, are the total number of

the unknown coefficients in x and y-directions, respectively. The number of coefficients is
i assumed N, =N =16. For simplicity, 254 coefficients are assumed known, while only two

: J coefficients are assumed unknown. These 254 coefficients are obtained using a uniform random
LI number generator. The generated random rough surface is enforced to have a zero mean height.
J The inversion algorithm is tested to recover these two unknown parameters, @q,5 and ;. Zero

initial values of ¢, , and @, (i.e., flat surface) are used in the inversion algorithm, recovering

the true values of the coefficients as shown in F ig. 4.

The inversion algorithm required 76 and 88 runs of the 3-D SDFMM forward solver to
achieve 10°° error in the cost function for the sinusoidal and Tensor-product B-spline surface,
: respectively. Each run required 231 MB computer memory and approximately 15 CPU minutes,
i to achieve tolerance of 107 using the TFQMR iterative solver (transpose-free quasi-minimal
‘ residual algorithm). All computational work is conducted using the COMPAQ ALPHA server
667 MHz server.

The inversion algorithm is tested on a groove-like dielectric rough surface (1-D) of
dimensions 1.0x1.0 m® [2]. A variety of strategies are demonstrated in the inversion algorithm.
These strategies are the multiple-incidence strategy, the multiple-frequency strategy, and/or
combination of both strategies. The numerical results of reconstructing the groove-like surface
using the multiple-incidence are compared with those using single incidence, as shown in Fig. 5.
In this example, we assumed €, =4-1i0.01 and eleven receivers are located at 15 cm above the

ground mean plane, and separated by 6cm. The results show that multiple-incidence provides
better reconstruction of the surface.
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Fig. 1 Groove-like rough surface illuminated in x-y plane by a 2-D Gaussian beam
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Fig. 3a-b  2-D sinusoidal surface, (a) cost function behavior, (b) convergence of inversion
algorithm assuming the surface period L =14,. True value is represented by the diamond.
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Fig. 4 Convergence of inversion algorithm for 2-D Spline
with 2 unknown parameters (a7,5 and @, ,) . True value i
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