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ABSTRACT - A Numerical method is p-ted to evaluate the 
full wave solutions for TE (horizontally polarized) and TM 
(vertically polarized) double scatter crwss sections of one 
dimensional random rough surfaces. The full wave double 
scatter - sections M erpresed in terms of six dimensiond 
integrals. The cpu time n d c d  to evaluate the six d i m b o n d  

intcgrah using s t a n d a r d  techniques is ex-ve even for 
supercomputers. A numerid technique is used to  reduce the aix 
dimensional inre@ into three dimensional integrals (one 
dimensional integral calling two independent two dimensional 
integrals). These two dimensional integrals sccount for the 
correlations between the heights and slopes a t  two points on the 
surf=. The results exhibit the observed sharp enhanced 
bsdcscatter and the polarization dependence of the (IPDSS 

sections. The angular width and the magnitude of the enhanced 
badrscatter depend on the rough d a c e  parameters (mean 

square height and dope). 

I. FORMULATION OF THE PROBLEM 

The random rough surfaces are assumed to be rough 
in one dimension y=h(x) and the medium y<h(x) is 
assumed to be a good conductor. The  incident 
electromagnetic excitation is assumed to  be T E  or Th4 
plane waves and the receiver is assumed to be located 
in the far field. For suppressed exp(jwt) time 
excitations, the full wave solutions for the diffuse 
double scattered far fields are given by [1],[2] 

* [exp{-jkohi(n) - n;)} - 1) e ~ p { j k & ~ ( n ~  f - n i )}  

dn; 
dxk; dxk21 (1) [exp{jkoh;(ny f - n;)} - 11- JT 

in which the incident and the scatter wave vectors are 
in the directions of the unit vectors 

. .  - f -  f -  n - n xax + +yl (2) 
E l -  1-  - nxax + n)?, and 
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The position vectors to point 1' and point 2' on the 
rough surface are given by yLl and ik2, respectively, (see 
Fig. 1) 

'61 1 Q + h i  Zj,, FL2 = g2 + h; Zy, (3) 

The wave vector in the direction of the fields 
scattered from point 1' on the surface to point 2' on the 
surface is 

- 
(4) k' - - k0E' = ko(nkZx + n&), 

in which the free space wave number is ko = um 
and E' is a unit vector. The surface element scatterlng 
coefficients a t  points FS1 and fk2 on the surface are 
D1t(E',ii1) and D2,(Ef1ii'), respectively. The scattering 
coefficients depend on the polarizations of the incident 
and scattered waves, the media on both sides of the 
rough surface, and the local normals iii and iii a t  these 
points on the surface [l] (see Fig. 1). The shadow 
function U&) is equal to one only if point 1' on the 
surface is illuminated by the incident plane wave and 
observed at  point 2' on the surface. The shadow 
function U(rk2) is equal to one only if point 2' is 
illuminated by a point source at point 1' on the surface 
and visible by the receiver [3]. 

The double scattered intensity is obtained by 
multiplying the expression for the field (1) by its 
complex conjugate. The position vectors FK1 and fK2 
associated with the complex conjugate fields are given 
by 

\ 
( X . Y . 4  

(observation) 

Fig. 1 The double scatter electromagnetic waves. 
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F:’ = GI + h;’ Z,,, F:2 = G2 + h;’ z,,, (5) 

and the wave vector in the direction of the conjugate 
scattered fields is 

- 
ki = koii“ = ko(n!& + n&,), (6) 

The major contributions to the double scattered 
intensity come from the quasi parallel and the quasi 
anti parallel paths for the field and its complex 
conjugate (see Fig. 2 a,b) [4]. The statistical averages of 
the intensities with respect to the random heights and 
slopes at two pairs of points on the surface involve the 
conditional joint characteristic functions [5]. For the 
quasi anti parallel case, the diffuse double scatter cross 
section is given by 

k; Dl,(ii‘,iii) D~ll(i if l i i”)  

4 2  2L I < ‘[ko( -n\+n;)] [kO(nb-ny)] 
<ud> = ___ 

- [exp{-jkoh;(nb- n;)} - 11 [exp{-jkohy(ny f - n;) - l}]] 

[exp{jkohy(nb- n;)} - 131 U(Z,) U(fk2) U(F&) U(C2) > 

exp{jko~(nx-n,+n~-n~!}exp{jkoT(nx-nx-n~+n~))} ‘d2 f i . “dl f i 

dn; dny 
exp{j k o x m ( n ~ + n ~ - n ~ - n ~ ) }  

where Sdi and xci are sd*=”g-”ij and X ~ ~ = ( S ~ ~ + X ” . ) / ~  

(i # j=l,2). The random :ariables in (7) are the heights 
and the slopes a t  Fg,, Ti’, FL2, and ?:2 on the surface 
and the shadow functions U(rkl): U(Fk2), U(F&), and 
U(f12). The rough surface is assumed to be 
characterized by a Gaussian joint probability density 
function for the surface heights and slopes at two pairs 
of points on the surface. The surface height 
autocorrelation function and its Fourier transform (the 
rough surface spectral density function) are also 
assumed to be Gaussian. The  standard large radii of 
curvature assumption is made and the height slope 
correlations are accounted for through the use of the 
conditional joint characteristic functions [5]. The rough 
surface variables and xc2 are expressed in terms of 
xc=(xcl+xc2)/2 and xm=xcl-xc.. The limits of xc and 
x, are (-L,L) and (-Lm)Lm)) respectively. The distance 
L, is the statistical average of mean path for the 
double scattered waves. The  quasi parallel and the 

SJ 

quasi anti-parallel contributions to the diffuse double 
scatter cross sections are expressed in terms of six 
dimensional integrals [SI. The quasi anti-parallel 
contribution to the diffuse double scatter cross section 
is 

- <uad2(n;,ny)> sinc{ koL,(ni+ni-n&-n!J} 

exp{ - ki <h2> (-n)+n)-nfy+ni)2} 

in which <a 
associated with%e six& scatter cross sections. 

l(n) n”)> and <rad2(n;,n!)> are 

Re(D ,($,Ei) D;l&iflTi”)) 

/ l r [ k o (  - > 
. cos{ k o [ T  Xdl ( n x - n x + n ~ - n ~ ) + h x c l ~  f i (nf -ni +n’ -n”)]} 

< uadl (n; , n y) > =2 
n +n 11 [ko(n$-ny 

<hx> y 
f 2B2 

* exp{ -k;(-n;+n;) (nY-r$) [< h2> (l-RJ - +]} 
<hx> k2 B2 . - exp{ ~ O (-n1 +n‘ -nf+n‘l)2) 

2 < h i >  y y y y 

. P(hXCl) dhxcl dxdli (8b) 

Fig.2-a Quasi-parallel. regular path E’FYX“ 

Fig.2-b Quad-antiparallel, cross path i i ’m-E“ 
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cos{ko[T Xd2 ( n x - n x - n j c + n ~ ) + h x c 2 ~  f i (n f i  -n -n' +n" 

. exp{-k~(-n)+nl;)(ny-n;)[<h2>(1-RJ f - +]} 2B2 

B 
<hx> Y Y Y Y)" 

<hx> k2 B2 . . exp{ -J-+ (-nl +n"-nf+n' )2} 
2 < h x >  

A similar expression is obtained for the contribution 
from the quasi parallel path. At high frequencies, [l- 
P,(ln;l)] and [l-P,(Inyl)] are the probabilities of a 
multiple scatter event, where P, is derived by Sancer 
[3]. Similarly, the probabilities that the surface will be 
illuminated by the incident wave and. visible in the 
scatter direction are given by P2(iii) and P2(Ef), 
respectively [3]. In (8b) and (8c), the probability 
density functions for the slopes h,,, and hXC2 at the 
mid points between 1' and 2", and between 2' and 1" 
are p(hxcl) and p(hxc2), respectively. The limits of 
integration for x and x are (0,2L). The correlations 
5etween the heigtts and $e slopes a t  the points 1' and 
2'' and a t  the points 2' and 1" on the surface are given 
by B, and B,, respectively, and R, and R, are the 
surface height autocorrelation functions a t  these pairs 
of points. The mean square height and slope of the 
surface are given by <h2> and < h i > ,  respectively. The 
corresponding expression for the coherent intensity 
<ac> is obtained from (8) on setting RI,, and B,,, 
equal to zero. The  incoherent diffuse scatter cross 
section is <aI>=<u >-<ac>. 

For the propagating waves, the range of integration 
for n; and n; are (-1,l). Notice that the integrand in 
(8) is equal to its complex conjugate when E' and ii" 
are interchanged. Thus instead of integrating with 
respect to n; and n; over (-1,1), it is sufficient to 
integrate twice the real part of the integrand over the 
region n; 2 ny. To evaluate (8) new variables of 
integrations na and n are introduced in (sa) instead 

d 

of n; and ny. ?hey are dY given by 

The region of integration over n ay and ndy is a 
diamond shaped area whose end points on the ndy axis 
are 2 and on the nay axis are f 1. The integration is 
performed over the region n > 0 (corresponding to 
the region n; 2 n!). In (8b) and (8c) i t  is necessary to 
account for nk>O, ng<O as well as for n&<O, n:>O for 
the quasi anti-parallel case. The integrands of the quasi 

dY - 

parallel and the quasi anti parallel double scatter cross 
sections are plotted as functions of the wave vector 
variables [6]. These results show that the major 
contributions to the double scatter integrals come from 
the region around ii'=fi" for the quasi parallel case and 
from the region around E'=-fi" for the quasi anti 
parallel case. Moreover in view of the factors (l-P2) 
(associated with the multiple scatter events), the 
integrand of (8a) peaks when n' -0 and n'=O. Thus for 
the quasi anti parallel paths, the integrals (8b) and (8c) 
are evaluated numerically as functions of ndy for n;= 
-nl;=ndy/2 (na =O). The integrand of (sa) is evaluated 
as a function o!n and nay without recomputing (8b) 
and (8c). Thus t& six dimensional integrals for the 
quasi parallel and the quasi anti parallel cross sections 
are for practical purpose reduced to three dimensional 
integrals using this numerical technique. 

Y 7  

11. ILLUSTRATIVE EXAMPLES 

The diffuse single and double (quasi parallel+quasi 
anti-parallel) scatter incoherent cross sections are 

q51=0,4f=0,~) for the vertically (TM) and horizontally 
(TE) polarized waves. The  total cross section in 
obtained by adding the single and the double cross 
sections incoherently. The probability density functions 
of the slopes are assumed to be Gaussian. The mean 
square slope is <hi>=0.508 and the surface correlation 
length is lC=3.34 pn. In Fig. 3 the free space wave 
length is k 1 . 1 5 2  pm and in Figs. 4 and 5 the wave 
length is k 3 . 3 9 2  pm. The relative complex 
permittivity of the medium y<h(x) is cr=-62.787-j4.948 
at X=1.152 pm. It is cr=-424.64j81.144 a t  k 3 . 3 9 2  
pm. The double scatter.mean path is L,=11.131, [6]. 
The incident angle is &lo'. The results show sharp 
enhancement in the backscatter direction due to 
contributions from the quasi anti parallel double scatter 
paths. The polarization dependence is shown in Fig. 5. 
It is primarily due to the differences in the double 
scatter cross sections. Notice that the angular width of 
the enhancement around the backscatter direction is 
larger in Fig.4 than in Fig. 3. However, the level of the 
enhancement is larger in Fig. 3. 

piotted as functions of the scatter angles (0 f f  cos4 for 

111. CONCLUSIONS 

The s ix  dimensional integral expressions for the 
double scatter cross sections are evaluated as three 
dimensional integrals. The sharp enhanced backscatter 
is associated with the contributions from the quasi-anti 
parallel double scatter path. The double scatter cross 
sections depend upon the polarization. The angular 
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width and the magnitude of the sharp enhanced 
backscatter depend on the frequency and the rough 
surface parameters. These results are significantly 
different from the corresponding physical optics 
approximations. 
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