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Ahtract - Full wave que” for tbe a;ndy and the doubly d t e r c d  

fk- . fields from ooe dimensions rough surtacrs are uwputed. 

The tingly .catted like and c” pdari.cd fields are erpressed in krma 

of one dimeneiond integrals. However the doubly d t e r e d  full wave 

dutkuw are cxpread in tams of two and thnc dimensioaal integrals. 

To compute the like and the MO po lor id  multiple. kdkd &Ida i t  is 

“my to w e  a wpuuwputer. The d b  indicate that double 

d t e r  in the backward dincti i s a i g d k a n t  forwsrnormaincidena 

when tbe llquarc lllojbm of the highly d u c t i n g  rough “are 

krsa than d t y .  

FORMULATION OF THE PROBLEM 

For exp(jwt) time excitations, the full wave solutions for the 

singly scattered far fields from two dimensional rough surfaces 

f(x,y,z)=y-h(x,z)=O, can be expressed in the matrix form [l] ~8 follows, 
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For one dimensional rough surfaces y=h(x), equation (la) can be 

readily integrated with respect to zs and n;. Thus (la) reduces to, 

Assuming that kor > 1, we can use the steepest descent method to 

integrate (2a) with respect to n; to obtain the singly scattered far field, 

where, iif is the unit vector in the direction of the position vector Y to the 

observation point and, 

8=ko ( iif - ), r = ( xz + yz + z’)~/’ (3b) 

The singly scattered field G, incident upon the surface a t  YL2 can be 

obtained by using the full wave expression (2). Thus 

where El is a unit vector normal to the rough surface a t  ?h1,(see fig.1). 

in which ko=w$i& is the free space wavenumber. The radius vectors 

from the origin to the rough surface and to the observation point are 5 
and F, respectively, and fi’ and E’ are the unit vectors in the directions of 

the scattered and incident waves, respectively. The elements of the 2 x 1 

‘matrices Gi and Gfare the vertically and the horizontally polarized field 

components of the incident and scattered waves, respectively, and the 

elements of the 2 x 2  scattering matrices D(ii’,ii’) depend on the 

polarizations and the directions of the incident and scattered waves, the 

media on both sides of the rough interface, and the unit vector ii normal 

to the rough surface [l], [2]. The shadow function U(%) is given by 

(If) 
1 if illuminated and visible 

0 if nonilluminated or nonvisible 

Fig.1 The double scattered electromagnetic waves 

The full wave solutions for the doubly scattered electromagnetic 
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fields G i ,  are obtained by subetituting G2(G2) instead of Giexp(-jii' .G) 
in (la). Thus i t  follows that 

Assuming that k,,r > 1, the stapeat deacent method can be used to 

integrate (5) with respect to n!, thus 

Assuming that Lorzl > 1, we can apply the steepeat descent 

approximation to integrate (6) with respect to n). Thus (6) reduces to 

The above approximation is obviously valid only when Lorzl > 1. 

However (7) can nevertheless be used to evaluate (6) since the scattering 

coefficients (D) vanish as Fs2+Fsl. Note that the point 1 on the rough 

.surface must be illuminated by the incident plane wave and visible a t  Fss2 

on the surface. Similarly point 2 must be illuminated by a point source 

a t  G1 and visible by the observer a t  f (see fig.1). 

STATIONARY PEASE GEOMETRIC OPTICS APPROXIMATION 

At very high frequencies the major contributions to the double 

scattered fields come only from the points 1 and 2 on the surface a t  

which the phase 

ko8(xsl,xsz) = ko (iif-fsz-iii ~fsl-rzlsinO~) (8) 

in the integrand of (7) is stationary. These stationary phase points are 

computed by differentiating the phase with respect to xsl and xsz 
respectively and solving the two equations simultaneously. When the 

stationary phase paths are isolated, (the distance between two paths is 

large compared to the wavelength), the geometrid optics approximation 

for isolated saddle points [l], [3] is used and compared with the results 

obtained by numerical integration (7). If the two stationary phase paths 

a r t  close to each other ( this occurs when the maximum slope of the 

rough surface is cloee to 457 the geometrical optics expression [4] for 

nearby saddle points is used, (see fig.2). It is given a8 follows in terms of 

the Airy function : 
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where, 

F=i [ *(x') + @(xz) ] (9b) 

6i = sign(Di) , i = 1, 2 

In (sa) U(() is defined by : 

where Ai(() is the Airy function [7l. The argument of ( in (9c) is chosen 

to be r / 3  [5]. In this work the geometrical optics approximation is only 

used for backscatter a t  normal incidence, (sinO;=l in (3c)). Since there 

are two pairs of nearby stationary phase paths, we should apply (9) to 

each pair. If the maximum slope of the rough surface is less than 45' 

there are no stationary phase points on the surface and the above 

approximations cannot be used. The interference between the different 

doubly scattered contributions (see fig.2) could explain the observed 

fluctuations in the total scattered field near backscatter for normally 

incident excitations [6]. 

1 '  x12 

14 

Fig. 2 Stationary phase paths for N=4 
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ILLU!WRA"E EXAMPLES 

For the one dimensional rough surface h(x) = ho cos(2nx/A), 

several values of h, and A are used to stimulate realizations of rough 

surfacea with different mean square heights and slopes. In figs.3-5 the like 

polarized scattered fields (single, double, and the total phasor sum 

double+single) are plotted in the incident plane (+f=O, z) as functions of 

Orcmq5f for different incident angles and different conductivities. In 

fip.3,4 the results show that for normal incidence the magnitude of the 

vertically and the horizontally polarized doubly scattered fields, lEVVl 

and lEHHl respekively, are most significant a t  normal scatter angles. In 

fig.3 er= -11.43 - j1.24 for gold a t  X0=0.633pm, and in fig.4 the surface 

is perfectly conducting. The mean square slopes are <h:>=0.5384 in 

fig.3 and <hi>= 3.7 in fig.4. In fig.5 the horizontally polarized scattered 

fields lEHHl are plotted in the plane of incidence (bf=O,r) aa functions of 

O'cmq5'. The excitation is a horizontally polarized plane wave incident a t  

angle 8'=65: The surface is perfectly conducting with mean square slope 

<hg>=2.1537. The resulto show that for oblique incidence the obaerved 

enhanced backscatter is primarily due to single scatter. In fig.6 the crass 

polarized singly and doubly scattered fields lEVHl are plotted as 

functions of df for ainOfsin+f=sinOisin+i. Even though the surface h(x) is 
not a function of z depolarization occurs in this case because iii, E', and ii 

(local normal to the rough surface) are not in the same plane. The 

depolarized scattered fields vanish a t  +r=90' since for &SO', Of=&, and 

the integrands in (2) and (5) are antisymmetric over the sinusoidal 

surface h(x) [2]. 

A serial run of the computer program for the three dimensional 

integral (6) (on the supercomputer IBM/3090 a t  Cornell) takes about 

1000 cpu seeonda for e'=Oi=O to execute. It only takes 100 CPU seconds to 

evaluate the two dimensional integral (7) for O'=Oi=O. The algorithm has 

been para l le l id  to reduce the wall clock time. This algorithm is 

considered coaratgrained. The integration subroutines called from the 

IMSL or the NAG libraries are considered the hot spots on the algorithm. 

For this reason subroutine level parallelism has been used (parallel 

tasks). The allocation of variables either to the shared memory or to the 

private memory was a major factor in the parallelization of this 

algorithm. The program to compute the vertically polarized double 

scattered fields a t  different angles of scatter was run in parallel with 

different numbers of processors. Comparisons of the corresponding wall- 

.clock time and the CPU time are shown in Table 1. In this table the speed 

up is defined as follows 
speed-up = wall-clock time in serial 

Table (1) indicates a significant reduction in the wall-clock time 88 8 

result of the parallelization of the program. Note that the laet case in 

Table 1* had been run in batch and the machine was upgreded just a t  

that time. 

wall-clock time in parallel 

CONCLUDING REMARKS 

The full-wave expreseione for the single and the double scattered 

fields show that the double scatter contributes significantly to enhanced 

backscatter only for near normal incidence and when the mean square 

slope of the highly conductive surface is large. Moreover, when the 
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maximum slope of the surface is larger than 45', interference between the 

contributions from the different stationary phase patha (fig.2) result in 

the observed fluctuations of the enhanced doubly scattered fields 

(figs.3,4). This work provides physical insight to problems of scattering 

from random rough surfaces. 
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Tabk 1 

WALLCLOCK AND CPU TIMES 
FOR SERIAL AND PARALLEL PROCESSING 

#angles 

(scatter) 

31 

31 

Mode 

aerial 

nteractive 

parallel 

nteractive 

serial 

nteractive 

parallel 

nteractive 

serial 

(batch) 

parallel 

(batch) 

7 
seconds) (seconds) 

3620 1717 

1530 

1 

4+1 8.5* 
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