
Iterative Microwave Inversion Algorithm
Based On The Adjoint-Field Method For
Breast Cancer Application

Oliver Dorn1, Magda El-Shenawee2, and Miguel Moscoso1

1 Universidad Carlos III de Madrid odorn@math.uc3m.es, moscoso@math.uc3m.es
2 University of Arkansas magda@uark.edu

Summary. Our goal is to develop an inversion algorithm for reconstructing the
shape of 3D breast tumors using electromagnetic data. The method of moments
(MoM) forward solver is used to calculate the electric and magnetic equivalent sur-
face currents at the tumor interface and consequently the scattered electromagnetic
fields. Using a so-called ’adjoint scheme’ for gradient calculation, the mismatch be-
tween calculated and measured fields at the receivers is used as new sources at
all receiver locations and is back-propagated towards the tumor. The gradient is
calculated then simultaneously for all nodes of the guessed tumor surface in order
to obtain a correction displacement of each individual node of the surface which
points into a descent direction of a least-squares cost functional. This process is
repeated iteratively until the cost has decreased satisfactorily. Numerical results
in 3D are presented based on the proposed technique using multiple transmitting
sources/receivers at multiple microwave frequencies.
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1 Introduction

Microwave tomographic imaging is showing significant promise as a new tech-
nique for the early detection of breast cancer. Its physical basis is the high
contrast between the dielectric properties of the healthy breast tissue and
the malignant tumors at microwave frequencies [Gabriel et al. (1996)]. As a
consequence, microwave imaging systems which aim at detecting, localizing
and characterizing tumors in the breast are being developed. Among them,
we mention for example confocal imaging and near-field tomographic recon-
structions (see [Fear et al. (2002)] and references therein).

Mathematically, microwave medical tomography amounts to solving a non-
linear inverse problem for some form of Maxwell’s equations in which a given
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cost functional is minimized via an iterative algorithm. Traditional iterative al-
gorithms, well suited for nonlinear inverse problems and based on pixel recon-
struction techniques suffer from several drawbacks in this application, amongst
them the need of strong regularization for stabilizing the algorithms which typ-
ically is done by adding a Tikhonov-Philips term to the cost functional. This,
however, has the effect of severely smoothing out interfaces between tumors
and surrounding tissue. Therefore, new approaches that avoid these difficulties
need to be investigated. We will present here a shape-based approach for this
application which allows to reconstruct quite general shapes by moving each
individual surface node until a given cost functional is minimized. For more
details on shape-based reconstruction schemes in various applications see for
example the discussion led in [Dorn et al. (2006), El-Shenawee et al. (2006)].

2 Shape reconstruction in microwave imaging

Dropping out the time dependence eiωkt, we consider the system of Maxwell’s
equations

∇×Ejk(x)− αk(x)Hjk(x) = 0 (1)
∇×Hjk(x)− βk(x)Ejk(x) = 0 (2)

in a domain Ω ⊂ R3, where βk(x) = σ(x) + iωkε(x) and αk(x) = −iωkµ(x)
and where ωk, k = 1, . . . , k, are the different (angular) frequencies of the
applied fields. We will assume that αk(x), βk(x) are constant outside some
sufficiently large ball, with values denoted by αk,0 and βk,0, respectively. With
this assumption, we can apply the standard radiation condition outside this
ball. The index j in (1), (2) indicates the different incoming radiation patterns
(plane waves).

We will consider here the situation that the coefficient functions αk(x) and
βk(x) contain discontinuities along closed interfaces Γm ⊂ Ω, m = 1, . . . ,m,
such that we add standard interface conditions to (1), (2). Given incoming
plane waves corresponding to index jk, we can write the total field in the
medium as

Etot
jk = Einc

jk + Escat
jk , Htot

jk = Hinc
jk + Hscat

jk (3)

where Einc
jk and Hinc

jk satisfy (1), (2) with αk = αk,0 and βk = βk,0. Let us
assume that we have l receivers available at locations dl, l = 1, . . . , l. At these
receiver positions, we can decompose the scattered electric fields as

Escat(dl) = Er(dl)r̂ + Eθ(dl)θ̂ + Eφ(dl)φ̂. (4)

Here, r̂, θ̂ and φ̂ are the polar unit vectors at the points dl. With this, we can
define the linear measurement operators Mjkl by
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MjklEjk = Eθ
jk(dl)θ̂ + Eφ

jk(dl)φ̂ (5)

which measure the ’plane wave components’ of the scattered fields at the given
receiver location. We will assume in the following that the coefficient αk is
fixed and known to be αk = αk,0. We will write then MjkEjk(β) for the vector
of all measured fields which correspond to the parameter β, the frequency ωk

and the incoming plane wave with index j. Furthermore, gjk will denote the
corresponding physically measured (’true’) data. With this notation, we can
define the least squares cost functional

Jjk(β) =
1
2
‖Rjk(β)‖2 (6)

where Rjk(β) = MjkEjk(β)− gjk is the residual operator for indices (jk). In
the shape inverse problem, we assume that

β(x) =
{

βi for x ∈ D,
βe for x ∈ Ω\D.

(7)

When deforming in a given step of the iterative inversion scheme the current
shape D by a vector field v (i.e., each point x ∈ D is displaced according
to x → x + v(x)) then the fields and therefore also the least squares cost
will change. We want to find a vector field such that J is reduced by the
corresponding deformation. It has been shown in [Dorn et al. (2006)] that the
deformation of the boundary Γ = ∂D by a sufficiently small vector field v
gives rise to a change in the cost

δJjk = Re
∫

∂D

[R′jk(β)∗Rjk(β)]βi − βev(x) · n(x) ds(x) (8)

where R′jk(β)∗ denotes the formal adjoint operator of the linearized residual
operator R′jk(β) and n(x) is the normal direction to the boundary Γ in the
point x. Therefore, it is sufficient to find a vector field in the normal direction
to the boundary vd(x) = Fd(x)n(x) which points into a descent direction of
the cost J. Obviously, we can choose

Fd(x) = −γRe
{
R′jk(β)∗Rjk(β)βi − βe

}
(9)

for a sufficiently small positive step size γ > 0. Plugging v = vd into
(8) shows us that then the cost is reduced. The expressions R′jk(β)∗Rjk(β)
are calculated by an efficient ’adjoint scheme’ as explained for example in
[Dorn et al. (1999)]. This scheme requires us to run just one forward and one
adjoint simulation for a given frequency and incoming wave in order to evalute
the gradient expressions (9) at all nodes simultaneously.

3 Numerical experiments

In our numerical experiment shown here the true object is a sphere of radius
1 cm located at the center of the computational domain of 20× 20× 20cm3.
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Fig. 1. Reconstruction of a small sphere. The true object is displayed in gray colour,
and the reconstructed object by black colour in each iteration. Top left: after one
iteration; top right: after 100 iterations; bottom left: after 500 iterations. The bottom
right shows the evolution of the cost.

Inside the object, the relative dielectric constant is 50− j12, and in the back-
ground it is 9− j1.2. The total number of transmitters (receivers) is 30 with
5 of them being located at each plane of constant azimuth angle (starting at
θ = 0.1π and ending at θ = 0.9π) with ϕ between 0 and 2π . Two frequencies
are used here, namely f = 3 GHz and f = 5 GHz (ω = 2πf). Plane waves
are used to excite the object with incident polarization in the θ-direction.
The results shown here are for the co-polarization case, where both the in-
cident and scattered plane waves are in the θ-direction. Synthetic data is
generated using the method of moments, where the surface of the object is
discretized into surface nodes and triangular patches similar to the work of
[El-Shenawee et al. (2006)]. The number of discretization points in the θ- and
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ϕ-directions are 8 and 16, respectively, for the true object, while the object
generated at each inversion iteration is discretized into 10 and 16 points, re-
spectively. The gradient-based algorithm using adjoint fields is implemented
such that the location of each surface node will be corrected into the normal
direction of the current boundary by an amount given in equation (9) for each
node using a fixed small step-size factor γ (being 10−5 at 3 GHz and 10−3

at 5 GHz). A regularization step is applied after each update which amounts
to filtering neighbouring nodes by an averaging filter in order to obtain a
smooth surface. This smoothing operation will be discussed in more detailes
in a forthcoming publication.

In this work, the main focus is on reconstructing the shape of the object
assuming the knowledge of its position and electrical properties. The initial
guess in this case is a sphere of radius 2 cm located at the same position as
the true object. Figure 1 shows the true object (gray) and the guessed object
(black) at iteration numbers 1 (top left), 100 (top right) and 500 (bottom
left), where the latter one corresonds approximately to the lowest cost value
which we could achieve during our reconstruction. The evolution of the total
cost (summed over all indices) is displayed in the bottom right image of the
figure. We mention that the reconstruction at the final iteration number 900
looks quite similar to that one at number 500. We conclude that our algorithm
has converged in a stable way to the correct sphere.
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